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Abstract

A topology optimization framework for improving the dynamic fracture resistance of structures

is proposed. The phase field method for fracture is combined with Solid Isotropic Material with

Penalization (SIMP) topology optimization. The topology optimization problem is defined as min-

imizing the fracture energy during the whole dynamic loading process, from initiation of cracks

to full failure of the structure, under volume and compliance constraints. Semi analytical expres-

sions of sensitivities in a dynamic context are provided to solve the topology optmization problem

efficiently. Numerical examples involving structures subjected to impact loading are investigated.

It is shown that the present framework allows a significant reduction of the fracture energy as

compared to designs obtained by static optimization.

Keywords: Topology optimization, Phase-field method, Dynamics, Structural optimization,

SIMP, Fracture

1. Introduction1

Since the late 1980s [1], topology optimization (TO) has evolved into one of the most powerful2

numerical design methods. In a given design domain, topology optimization approaches [2, 3, 4, 5]3

generate the optimal topological designs that minimize or maximize an objective function with4

certain design constraints. The problems solved by TO have gradually evolved from simple linear5

global optimization problems to localized stress problem [6], to dynamic problems [7], nonlinear6

problems [8], uncertainties [9], multidisciplinary integration [10] or towards large-scale problem7

[11], among many others. These achievements have demonstrated the potential of TO in both8

academic and industrial applications.9
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Recently, an exciting new branch of TO has emerged to enhance the mechanical resistance10

to damage or cracks in structures and materials. The pioneering work on this topic might be11

traced back to Challis et al. [12], in which a level-set method was proposed to maximize the12

structural fracture resistance. In [13], Kang et al. used a J-integral approach to predict crack13

opening at predefined locations. In [14, 15], non-local damage field was considered for the first14

time in TO to obtain the optimal mechanical resistance design of concrete structures and their15

reinforcement. Similarly, Kato and Ramm [16] investigated fiber-reinforced composites considering16

a damage model, in which the layout of the multi-phase materials was optimized. James and17

Waisman [17] developed a non-local damage-TO- coupled algorithm for failure reduction, in which18

the maximal damage was constrained, similarly to what is usually done in stress-constrained19

problems. In [18, 19], Li et al. investigated TO methods involving stored energy while constraining20

the elastoplastic-damage. More recently, Russ and Waisman [20] proposed a method for the21

structural resistance of both ductile failure and buckling in a new aggregated optimization objective22

with local ductile failure constraints. Liu et al. [21] investigated multi-material fracture resistance23

TO including cohesive models.24

Note that the above mentioned studies do not include a complete damage or crack evolution25

involving the whole loading history. In [22], Zhang et al. firstly included a full crack propagation26

analysis within TO for fracture resistance designs, using the X-FEM [23, 24] method. However,27

the complexity of XFEM for dealing with initiation and complex cracks configurations strongly28

restricts its use within TO analysis. In [25], Xia et al. combined for the first time TO with frac-29

ture phase field analysis to maximize the resistance of composite structures. The variational phase30

field approach to fracture [26, 27, 28, 29, 30, 31] has unique advantages to deal with initiation,31

propagation of multiple, complex, 3D cracks in possibly regular meshes due to an appropriate reg-32

ularization process, and is highly compatible with TO analysis. Da et al. [32, 33, 34] extended this33

work to consider fracture resistance enhancement in composite by considering both interfacial and34

bulk fracture. More specifically, the approaches developed in these works considered a full fracture35

initiation and propagation within the structure until failure and combined the phase field method36

with BESO [35] TO methods. Li et al. [36] extended Xia et al.’s work to the SIMP [37, 38, 3]-37

based topology optimization framework and provided a comprehensive comparison of the BESO38

and SIMP methods for composite design to brittle fracture resistance. Russ and Waisman [39, 40]39

proposed two different topology optimization frameworks for the brittle fracture resistance involv-40
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ing one-phase structure material, combining phase field and TO. In their work, the optimization41

problem was defined as minimizing the total volume or volume and fracture energy while ensuring42

fracture energy or energy dissipation constraints. Wu et al. [41] developed a level-set method [4, 42]43

based topology optimization for the brittle fracture resistance of two-phase composite materials.44

Taking into account dynamics in the fracture process is of extreme importance for resistance of45

structures to impacts. When dynamics are involved, the cracks can interact with wave propagation46

and the final crack patterns depend on the energy of the impactor. In addition, dynamics can lead47

to more complex crack configurations such as crack branching or initiation of cracks within the48

solid. In [43], Miller et al. analyzed the relationship between energy dissipation and crack paths49

instabilities in dynamic fracture of brittle materials.50

The phase field method has been extended to dynamic problems in Borden et al. [44], Hofacker51

and Miehe [45], and many extensions and applications have been proposed (see e.g. [46, 47, 48,52

49, 50, 51]).53

In the present work, TO analysis for dynamic fracture resistance of structures is investigated.54

As compared to available existing works, the present framework involves the folllowing new con-55

tributions: (a) dynamic phase field simulations to fracture is combined with TO for minimizing56

the fracture energy of a structure; (b) semi-analytical sensitivities required in the TO analysis in a57

dynamic fracture analysis context are provided; (c) comparisons of the obtained fracture resistance58

(reduction in the fracture energy) as compared to a static TO designs are discussed.59

The organization of the paper is as follows. In section 2, the dynamic fracture model involved60

in the analysis is reviewed. In section 3, the related time-space discretizations in the context of the61

Finite Element Method (FEM) are provided. In section 4, the topology optimization framework62

involving the dynamic fracture analysis is developed. The sensitivity analysis related to the fracture63

energy of the system in a dynamic context as well as the whole SIMP TO algorithm is provided.64

Finally, numerical examples are proposed in section 5 to validate the sensitivity analysis, and to65

evaluate the fracture energy reduction of different structures, and more specifically the added value66

of the dynamic analysis as compared to a static TO.67

2. Dynamic phase field fracture model68

In this section, the dynamic phase field method for crack propagation in quasi-brittle solids69

is briefly reviewed. A structure defined in a domain Ω ⊂ RD is considered, with D the space70
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(a) (b)

Figure 1: Cracked solid: (a) representation of cracks by surfaces; (b) continuous approximation of cracks by a

damage field d(x).

dimension, with external boundary ∂Ω ⊂ RD−1. In the context of the phase field method, as shown71

in Fig. 1, the crack surfaces collectively denoted by Γ are described by a continuous damage field72

d ∈ [0, 1], which takes 0 value when the material is undamaged and 1 when the material is cracked.73

The portions of ∂Ω, ∂Ωu and ∂Ωt denote the Dirichlet and Neumann boundaries, respectively (see74

Fig. 1). We define u, u̇ = du
dt

and ü = d2u
dt2

as the displacement, velocity and acceleration vectors,75

respectively.76

In this context, the elastic strain energy Es is defined by77

Es(u, d) =

∫
Ω

ψe (ε (u), d) dΩ (1)

where ψe is a strain density function, whose form will be specified later, and ε = 1
2

(
∇u+∇Tu

)
78

is the linearized second-order strain tensor, with ∇(·) the gradient operator. The kinetic energy79

of the solid is defined by:80

Ek (u̇) =

∫
Ω

1

2
ρu̇ · u̇ dΩ, (2)

where ρ is the material density. In the phase field method, a non-local fracture energy is defined81

according to82

Ef (d) =

∫
Ω

c1Gc
(
ω(d) + `2∇d · ∇d

)
dΩ (3)

where c1 is a constant, Gc is the Griffith-type critical energy release rate, ω(d) is a local dam-83

age density function, and ` is a length regularization parameter, which defines the width of the84

regularized crack. Finally the work of external forces is defined by85
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W ext(u) =

∫
∂Ωt

t · u dS +

∫
Ω

f · u dΩ (4)

where t denotes prescribed traction over the portion of the boundary ∂Ωt (see Fig. 1), and f86

denotes body forces. The action-integral over the time interval [t1, t2] is defined by:87

A =

∫ t2

t1

[
Es(u, d) + Ef (d)− Ek(u̇)−W ext(u)

]
dt. (5)

In the dynamic context, the variational principle of nonlocal damage at the core of the phase88

field method implies minimization of the action-integral under the constraint of irreversibility of89

the damage field, i.e.90

ḋ ≥ 0. (6)

where ḋ = d(d)/dt denotes the rate of the damage field.91

In the following, the different equations of the model in the case of an assumed isotropic quasi-92

brittle solid are specified. We follow Miehe et al. [28] and express the strain density function such93

that damage is induced by traction only as:94

ψe =
(
(1− d)2 + b

)
ψ+
e + ψ−e , (7)

where ψ+
e and ψ−e denote the positive and negative components of the strain density function,95

respectively, which can be computed from the strain tensor as96

ψ±e =
λ

2
〈Tr [ε]〉2± + µ ε± : ε±, (8)

where λ and µ are the Lamé coefficients, which can be related to the Young’s modulus E and97

Poisson’s ratio ν by98

λ =
Eν

(1 + ν) (1− 2ν)
and µ =

E

2 (1 + ν)
. (9)

Note that other decompositions exist (see a comparison and discussion e.g. in [52]). Above,99

〈·〉± can be expressed by 〈a〉± = 1
2

(a± |a|) and Tr [·] denotes the trace operator. The positive and100

negative parts ε± can be expressed by:101

ε± =
D∑
p=1

〈εp〉± Qp, Qp = vp ⊗ vp, (10)
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where D denotes the space dimension and εp and vp are the eigenvalues and eigenvectors of ε,102

respectively. The following definitions are used: ω(d) = d2 and c1 = 1
2`

[27]. Other choices are103

possible, e.g. using ω(d) = d and c1 = 3
8`

[53]. The first choice induces damage for any loading104

(even though very low at the beginning) while the second choice leads to a linear elastic stage105

before damage. Due to its simplicity, the first choice is adopted here. A more in-depth comparison106

of the different available models and applications in a dynamic context can be found in [54].107

With these models at hand, stationary variation of (5) leads to the following Euler-Lagrange108

equations:109


∇ · σ + f = ρü,

Gc
`

(
d− `2∆d

)
= 2 (1− d)ψ+

e ,
(11)

where ∇ · (·) and ∆ (·) denote the divergence and Laplacian operators, respectively, and where σ110

is the Cauchy stress tensor σ = ∂ψe
∂ε

, which is expressed under the above assumptions by:111

σ =
(
(1− d)2 + b

) ∂ψ+
e

∂ε
+
∂ψ−e
∂ε

=
(
(1− d)2 + b

) (
λ〈Tr [ε]〉+1 + 2µε+

)
+
(
λ〈Tr [ε]〉−1 + 2µε−

)
,

(12)

where 1 is the second-order identity tensor and b << 1 a small numerical parameter used to112

maintain stability in the case of fully broken elements. Above, ε± and 〈Tr (ε)〉± can be related to113

ε through the following operators:114

ε± = P± : ε (13)
115

〈Tr [ε]〉± = R± Tr [ε] (14)

in which the components of P± are given in closed form as [55]:116

P±ijkl :=
∂ε±

∂ε
=

D∑
p

H (±εp) (Qp)ij (Qp)kl +
1

2

D∑
p

D∑
q 6=p

φpq

(
(Qp)ik (Qq)jl + (Qp)il (Q

q)jk

)
(15)

with117

φpq =


〈εp〉± − 〈εq〉±

εp − εq
, if εp 6= εq

H (±εp) , if εp = εq
(16)

where H (·) denotes the Heaviside step function. The operator R± is expressed by118

R± =
1

2
(sign (±Tr [ε]) + 1) . (17)
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119

To achieve non-reversible evolution of cracks, a strain history functional introduced by Miehe120

et al. [28, 45, 56] is adopted to replace ψ+
e in Eq. (11), as121

H (x, t) = max
s∈(0,t]

{
ψ+
e (x, s)

}
. (18)

Then, the equations (11) are substituted by122 
∇ · σ + f = ρü,

Gc
`

(
d− `2∆d

)
= 2 (1− d)H,

(19)

The above equations are completed with boundary conditions as123 
u = ū on ∂Ωu,

σ · n̂ = t̄ on ∂Ωt,

∇d · n̂ = 0 on ∂Ω.

(20)

where n̂ denotes the outward unitary normal vector to ∂Ω (see Fig. 1).124

Multiplying Eqs. (19) by two different test functions, δu for the displacement problem and δd125

for the phase field problem, respectively, integrating the resulting expression over the domain Ω,126

and using the divergence theorem together with boundary conditions yields the associated weak127

forms: find d ∈ H1(Ω) and find u ∈ D = {v|v = u on ∂Ωu,v ∈ H1(Ω)} such that:128

∫
Ω

(
2H(u) +

Gc
`

)
d δd+ Gc`∇d · ∇d dΩ =

∫
Ω

2H(u)δd dΩ (21)

129 ∫
Ω

{ρü · δu+ σ(u, d) : ε (δu)} dΩ −
∫
∂Ωt

t̄ · δu dS −
∫
Ω

f · δu dΩ = 0 (22)

for all δd ∈ H1(Ω) and δu ∈ H1
0 (Ω) = {v|v = 0 on ∂Ωu,v ∈ H1(Ω)}, H1 is the usual Sobolev130

space of square-integrable derivative functions.131

3. Numerical solving procedure132

Displacement field u, phase field d and their gradients ε (u) and ∇d are approximated by133

classical FEM interpolation in the elements of the FEM mesh according to:134

u(x) = Nu(x)ue, ε (x) = Bu(x)ue,

d(x) = Nd(x)de, ∇d(x) = Bd(x)de,
(23)
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where ue and de denote the nodal displacement and phase field in an element e, N and B denote135

the matrices of the shape functions and their derivatives, respectively. The indices (u and d) of N136

and B refer to displacement and phase field variables, respectively.137

A staggered scheme is adopted. At one time step tn , the phase field problem (21) is solved,138

assuming the displacement field u given. Then, the mechanical problem (22) is solved assuming the139

phase field d given. These problems are solved alternatively before solving the problems at the next140

time step. Note that the mechanical problem (22) is nonlinear due to the separated description141

of the strain field in (10). Here, we transform this problem into a linear one by expressing the142

projectors P± with with respect to the displacements know from the previous time step n− 1, i.e.143

P±(εn) ' P±(εn−1), R±(εn) ' R±(εn−1).144

At time tn, the strain history functional described in Eq. (18) can be calculated using145

Hn =


(
ψ+
e

)n
if
(
ψ+
e

)n −Hn−1 > 0,

Hn−1 otherwise,
(24)

Note thatHn is discontinuous, which brings difficulties to the subsequent sensitivity derivations146

presented in section 4. To alleviate this issue, we introduce a continuous version of the history147

function as:148

H̃n ' Hn−1 +
[(
ψ+
e

)n −Hn−1] g ((ψ+
e

)n −Hn−1) (25)

where g is a regularized Heaviside function, defined by149

g(x) =
1

2

(
1 +

2

π
arctan

(
x

ζ

))
, (26)

and ζ is regularization parameter. When ζ decreases, the approximation is closer to a sharp jump150

(see Fig. 2). In this paper, ζ = 10−6 is adopted.151

More specifically, expressing the strain and stress tensors in vector forms in 2D , i.e. [ε] =152

[ε11, ε22, 2ε12], [σ] = [σ11, σ22, σ12], the constitutive law (12) can be expressed at time tn as:153

[σn] =
(
(1− dn)2 + b

) {
λR+

n−1 ([εn] · [1]) [1] + 2µP+
n−1 [εn]

}
154

+λR−n−1 ([εn] · [1]) [1] + 2µP−n−1 [εn] , (27)

where R±n−1 = R± (εn−1) and P±n−1 = P± (εn−1), and P± are the matrix forms associated with155

the fourth-order tensors P±.156

Introducing (23) and (27) in (21)-(22) we obtain a linear system of equations in the form157
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Figure 2: Regularized Heaviside function.

Kn
dd

n = F n
d , (phase field problem), (28)

Mün +Kn
uu

n = F n
u , (displacement problem) (29)

with158

M =

∫
Ω

ρNu
TNudΩ and F n

u =

∫
∂Ωt̄

Nut̄
n dS. (30)

Kn
u =

∫
Ω

BT
u

{(
(1− dn)2 + b

) (
λR+

n−1 [1]T [1] + 2µP+
n−1

)}
BudΩ,

+

∫
Ω

BT
u

{
λR−n [1]T [1] + 2µP−n

}
BudΩ, (31)

Kn
d =

∫
Ω

{(Gc
`

+ 2Hn)NT
d Nd + Gc`BT

dBd}dΩ (32)

and159

F n
d =

∫
Ω

2NT
d HndΩ. (33)

Then, a time-stepping I = [t0, t1, t2, ..., tM ] is introduced, where tn − tn−1 = ∆t is a time step,160

assumed to be constant. An unconditionally stable implicit Newmark scheme is used to solve (29)161

according to:162
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u̇n = u̇n−1 +
∆t

2

(
ün−1 + ün

)
, (34)

with163

un = un−1 + ∆tu̇n−1 +

(
∆t2

4

)(
ün−1 + ün

)
, (35)

ün =

(
4

∆t2

)
(un − ûn) (36)

ûn = un−1 + ∆tu̇n−1 +

(
∆t2

4

)
ün−1. (37)

Introducing (36) into (29), we finally obtain at one iteration k and at one time step tn the164

linear problem to be solved:165

K̃uu
n = F̃ n

u , (38)

with166

K̃u =

(
4

∆t2

)
M +Kn

u (39)

167

F̃ n
u = F n

u +M

(
4

∆t2

)[
un−1 + ∆tu̇n−1 +

(
∆t

2

)2

ün−1

]
. (40)

Note that in the present work iterations are used within the staggered scheme, i.e the mechanical168

and phase field problems are solved alternatively during one time step tn until a convergence169

criterion is reached. In this work, the convergence criterion is reached when the maximum value170

of the nodal phase field variation between two iterations is lower than a threshold. This algorithm171

allows larger time steps in the present implicit Newmark’s scheme. In addition, such staggered172

scheme is a key ingredient to simplify the sensitivity analysis developed in section 4.3.173

The general algorithm is summarized in Algorithm 1, where quantities at one time step tn and174

at one iteration k are denoted by (.)nk .175

4. Topology optimization formulations176

4.1. Material interpolation scheme177

In the present paper, the SIMP topology optimization method (Solid Isotropic Material with178

Penalization (SIMP) method [3, 37]) is adopted. This method belongs to the so-called density-179

based topology optimization (TO) methods (see a review and classification of TO in [57]). In180
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Algorithm 1: Staggered dynamic Phase Field algorithm solving procedure.

Initialize: u0, u̇0, ü0, d0, H0 = 0;

for n = 1 : M (Loop over all time steps) do

Input: un−1

Initialize un0 = un−1

k = k + 1

while Err > tol (Convergence loop) do

k = k + 1;

Input: unk−1

Solve Kd(u
n
k−1)d

n
k = Fd(u

n
k−1)

Output: dnk

Input: dnk ,u
n
k−1

Solve Ku(u
n
k−1,d

n
k)unk = Fu(u

n
k−1)

Output: unk

Compute Err = max
j
| [dnk ]j −

[
dnk−1

]
j
|

unk−1 = unk

end

un = unk

end
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this framework, the geometry of the structural domain is defined by a pseudo-density parameter181

ϕ ∈ [0, 1]. Then, a continuous description of the material properties is defined according to:182

E (ϕ) = [Emin + (1− Emin)ϕpE ]E0,

ρ (ϕ) = [ρmin + (1− ρmin)ϕpρ ] ρ0,

Gc (ϕ) = [Gc,min + (1− Gc,min)ϕpG ]Gc,0,

(41)

where E0, ρ0 and Gc,0 denote the material properties of the solid for ϕ = 1, and Emin, ρmin and183

Gc,min are artificial lower values to avoid numerical singularity in zero-pseudo density zones. Above,184

pE, pρ and pG are penalty parameters. These parameters are chosen so as to avoid intermediate185

values of ϕ. Here, we choose pE = 3, pρ = 1 and pG = 1. The values of Emin, ρmin and Gc,min186

are defined as Emin = 10−6, ρmin = 10−6 and Gc,min = 10−2, respectively. Note that alternative187

approaches, e.g. the BESO method [35] could be used (see [36] for a comparison between SIMP188

and BESO in the context of fracture resistance maximization).189

4.2. Optimization problem190

In this section, we define the topology optimization problem related to minimizing the dynamic191

fracture of a structure. Following previous works on fracture resistance maximization using topol-192

ogy optimization [25, 36], the phase field method described in section 3 is used to describe the full193

fracture process of the structure, from initiation until full failure, while here the dynamic effects194

are taken into account. The problem can be formulated as follows:195

min
ϕ∈[0,1]

: Gf (ϕ),

s. t. : Kn
dd

n = F n
d , n = 1, 2, ...,M

Mün +Kn
uu

n = F n
u , n = 1, 2, ...,M

C − C0 ≤ 0,

V − χV0 ≤ 0,

(42)

where Gf (ϕ) denotes the fracture energy, and C = F s ·us denotes a structural static compliance.196

Here, the compliance constraint is only used to ensure connectivity of the material within the197

structure. Without this constraint, unrealistic topologies with disconnected parts could be obtained198

in this dynamic context, as cracks may occur in the middle of the structure. The compliance C is199

evaluated by a separated static test with an external force F s = -100 N. Note that such compliance200
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constraint has been used by several other authors in a dynamic topology optimization context,201

even though in a linear vibration regime (see e.g. [58, 59]). Above, us is the static displacement202

response of the undamaged structure under a test static external load F s and C0 is the prescribed203

compliance upper bound; V is the target structural volume (area in 2D), which can be computed204

as V =
∑Ne

e=1 Veϕe, and V0 =
∑Ne

e=1 Ve is the total volume of the design domain, and χ denotes the205

target volume fraction constraint. We define the fracture energy over the whole loading history as:206

Gf =

∫ T

0

∫
Ω

(
1

`
d · ḋ+ `∇d · ∇ḋ

)
Gc dΩ dt. (43)

Using the trapezoidal rule, Gf can be numerically approximated as207

Gf =
M∑
n=1

1

2

[
(dn)T Kgḋ

n +
(
dn−1

)T
Kgḋ

n−1
]

∆t, (44)

where Kg is defined by208

Kg =

∫
Ω

Gc
(

1

`
(Nd)

T Nd + ` (Bd)
T Bd

)
dΩ. (45)

Above, Kg is a matrix which depends neither on damage nor on displacement fields.209

4.3. Sensitivity of fracture energy210

In this section, the sensitivity of fracture energy is derived in a dynamic context. The deriva-211

tions require the use of the adjoint method [60, 61, 62]. For the widely known derivations related212

to the compliance and volume fraction, one may refer to [63, 64] for details.213

The sensitivity of Gf with respect to a change in the pseudo-density is given by214

∂Gf

∂ϕe
=

M∑
n=1

1

2

∂

∂ϕe

[
(dn)T Kgḋ

n +
(
dn−1

)T
Kgḋ

n−1
]

∆t, (46)

and involves evaluating ∂dn

∂ϕe
and ∂ḋn

∂ϕe
. Using the chain rule, we have215

∂ḋn

∂ϕe
=
∂ḋn

∂dn
∂dn

∂ϕe
(47)

where ∂ḋn

∂dn
can be obtained by the Newmark scheme (34)-(36)(37) as the simple expression:216

∂ḋn

∂dn
=

2

∆t
. (48)

To express ∂dn

∂ϕe
the adjoint method [62] is employed. Introducing two vectors of Lagrange217

multipliers (adjoint vectors) λn and λn−1, and assuming that the problems218
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Rn
d = Kn

dd
n − F n

d = 0 (49)
219

Rn−1
d = Kn

dd
n−1 − F n−1

d = 0 (50)

have been solved, then the terms (λn)T Rn
d and (λn−1)

T
Rn−1
d can be added to the objective220

function without change as:221

Gf =
Ns∑
n=1

{
1

2

[
(dn)T Kgḋ

n +
(
dn−1

)T
Kgḋ

n−1
]

∆t+ (λn)TRn
d +

(
λn−1

)T
Rn−1
d

}
. (51)

In addition, using (8), (ψ+
e )

n
can be expressed using the discrete (vector) forms of strain tensor222

as:223

(
ψ+
e

)n
=

1

2
εn
(
λR+

n−1 [1]T [1] + 2µP+
n−1

)
εn. (52)

In (52), it is worth noting that ε obviously depends on ϕe. However, for the sake of simplicity,224

we assume that the term involving ∂ε
∂ϕe

has small influence as compared to the other terms and225

neglect it. Then, the following approximation is made:226

∂ (ψ+
e )

n

∂ϕe
' 1

2
εn
(
∂λ

∂ϕe
R+
n−1 [1]T [1] + 2

∂µ

∂ϕe
P+
n−1

)
εn. (53)

227

Taking the derivation of Gf with respect to the pseudo-density, using (48) and combining similar228

terms, the following expression is obtained, after some calculations:229

∂Ĝf

∂ϕe
=

Ns∑
n=1

{
1

2

[
(dn)T

∂Kg

∂ϕe
ḋn +

(
dn−1

)T ∂Kg

∂ϕe
ḋn−1

]
∆t

+ (λn)T
(
∂Kn

d

∂ϕe
dn − ∂F n

d

∂ϕe

)
+
(
λn−1

)T (∂Kn−1
d

∂ϕe
dn−1 − ∂F n−1

d

∂ϕe

)
+

[
1

2

((
ḋn
)T
Kg + (dn)TKg

∂ḋn

∂dn

)
∆t+ (λn)TKn

d

]
∂dn

∂ϕe

+

[
1

2

((
ḋn−1

)T
Kg +

(
dn−1

)T
Kg

∂ḋn−1

∂dn−1

)
∆t+

(
λn−1

)T
Kn−1

d

]
∂dn−1

∂ϕe

}
.

(54)

The terms ∂dn

∂ϕe
and ∂dn−1

∂ϕe
are difficult to evaluate in practice. However, as Rn

d = 0 and230

Rn−1
d = 0, the vectors λn and λn−1 can be chosen arbitrarily. They are then chosen to eliminate231

the unknown terms ∂dn

∂ϕe
and ∂dn−1

∂ϕe
such that:232

14



[
1

2

((
ḋn
)T
Kg + (dn)TKg

∂ḋn

∂dn

)
∆t+ (λn)TKn

d

]
∂dn

∂ϕe
= 0 (55)

and233 [
1

2

((
ḋn−1

)T
Kg +

(
dn−1

)T
Kg

∂ḋn−1

∂dn−1

)
∆t+

(
λn−1

)T
Kn−1

d

]
∂dn−1

∂ϕe
= 0. (56)

Eqs. (55) and (56) are equal to zero if the expressions under brackets on the left-hand are equal234

to zero, corresponding to the following systems of equations:235

2Kn
dλ

n = −

(
Kgḋ

n +Kg
∂ḋn

∂dn
dn

)
∆t, (57)

and236

2Kn−1
d λn−1 = −

(
Kgḋ

n−1 +Kg
∂ḋn−1

∂dn−1
dn−1

)
∆t. (58)

Solving Eqs. (57) and (58), the Lagrange multipliers λn and λn−1 are then available. Above,237

the expressions of ḋn can be computed according to (34). The sensitivity of the fracture energy is238

then finally obtained as:239

∂Gf

∂ϕe
=

Ns∑
n=1

{
1

2

[
(dn)T

∂Kg

∂ϕe
ḋn +

(
dn−1

)T ∂Kg

∂ϕe
ḋn−1

]
∆t

+(λn)T
(
∂Kn

d

∂ϕe
dn − ∂F n

d

∂ϕe

)
+
(
λn−1

)T (∂Kn−1
d

∂ϕe
dn−1 − ∂F n−1

d

∂ϕe

)} (59)

in which ∂Kg

∂ϕe
can be derived from Eq. (45), as:240

∂Kg

∂ϕe
=

∫
Ω

∂Gc
∂ϕe

(
1

`
(Nd)

T Nd + ` (Bd)
T Bd

)
dΩ. (60)

The terms
∂Kn

d

∂ϕe
and

∂Fnd
∂ϕe

are given by241

∂Kn
d

∂ϕe
=

∫
Ω

{(
2
∂Hn

∂ϕe
+

∂Gc
`∂ϕe

)
(Nd)

T N d +
∂Gc
∂ϕe

` (Bd)
T Bd

}
dΩ,

∂F n
d

∂ϕe
=

∫
Ω

2
∂Hn

∂ϕe
NddΩ,

(61)

where ∂Gc
∂ϕe

can be obtained from the material interpolation scheme (41), and ∂Hn
∂ϕe

can be derived242

from Eq. (25):243

∂Hn

∂ϕe
=
∂ψ+

e

∂ϕe
g
(
ψ+
e −Hn−1)+

[
ψ+
e −Hn−1] ∂g (ψ+

e −Hn−1)

∂ϕe
(62)
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with244

∂g ((ψ+
e )

n −Hn−1)

∂ϕe
=

ζ
∂(ψ+

e )
n

∂ϕe

π
(
ζ2 + ((ψ+

e )n −Hn−1)
2
) , (63)

and the term
∂(ψ+

e )
n

∂ϕe
have been approximated by Eq. (53). Note that above adjoint vectors λn and245

λn−1 are here path-independent, in contrast to other formulations, see e.g. [39, 40]. This strong246

assumption has the advantage to gratefully simplify the formulation and the implementation. The247

influence of such simplification on the accuracy of the sensitivities will be tested in the numerical248

examples.249

4.4. Optimization techniques250

Initialize design 

variables and filter

Converged?

Begin

Compute objective function 

and constraints

End 

Solve dynamic fracture 

problem during a given 

time interval (Algorithm 1)

Update design 

variables via optimizer

Material interpolation

Sensitivity analysis 

Density filter

and projection

NoYes

Figure 3: Optimization flow chart.

To improve stability, mesh independence and to eliminate so called checkerboard issues [65],251

filtering techniques are often used in topology optimization. Following [66, 64], a filtered density252

variable θe is introduced as253

θe =

∑
i∈Ne

$eVeϑe∑
i∈Ne

$eVe
(64)

where ϑ denotes the design variable and Ne denotes the set of elements whose center-to-center254

distance rei to the e-th element is lower than the filter radius rmin. The corresponding weighting255

factor $ei is defined by $ei = max (0, rmin − rei).256

The projection technique proposed by Guest et al. [67] is then adopted to minimize transition257

regions with pseudo-density values ϕ between zero and one, as258

ϕe = 1− e−ηθe + θee
−η (65)
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Figure 4: Geometry and boundary conditions of: (a) Half MBB-beam; (b) Cantilever beam.

where ϕe is the elemental pseudo-density, and η is a parameter defined by 1 in the first iteration259

and is doubled after every specified time steps until it reaches a chosen maximum value, taken260

here as 128 by numerical tests.261

Using this procedure, the sensitivities of the objective functions and optimization constraints262

with respect to the design variable can be further derived by means of the chain rule as263

∂f (ϕe)

∂ϑe
=

∂f

∂ϕe

∂ϕe
∂θe

∂θe
∂ϑe

. (66)

The method of moving asymptotes (MMA) proposed by Svanberg [68] is adopted for seeking264

the optimal distribution of the design variables ϑ. Following [69], the η-based modification on the265

asymptotes are adopted for removing spurious oscillations after doubling the projection parameter266

η. The convergence criterion of the topology optimization is determined by the maximal change267

on the design variable, which should be less than 10−3. Fig. (3) summarizes the flow chart of the268

proposed topology optimization.269

5. Numerical examples270

In this section, two typical 2D structures are considered. These have been widely studied in the271

topology optimization community. The first one is a 3-point bending beam, also called MBB-beam272

in the literature [70]. For the sake of computational costs, only the right half of this axisymmetric273

beam is considered as shown in Fig. 4(a). The left end is simply supported in the x-direction274

and the lower right-end corner is simply supported in the y-direction. The second structure is a275

cantilever beam, which is shown in Fig. 4(b). The length and width of these two structures are the276

same, L = 150 mm and H = 60 mm. A velocity is prescribed on a surface of length Lf = 4mm.277

Fig. 5 depicts the loading velocity profile, which increases from 0 to v0 by a time t0, and then278
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Table 1: Material parameters.

Material properties Symbol Value Unit

Young’s modulus E0 1.9× 105 MPa

Poisson’s ratio ν 0.3 -

Density ρ0 8× 10−9 ton/mm3

Critical energy release rate Gc,0 22.17 N/mm

remains constant until the maximum time tmax is reached. The material properties adopted here279

are taken from the Kalthoff-Winkler experiment [71], and are summarized in Table 1. The same280

geometry, loading curve and parameters will be kept in all following examples. In the example of281

section 5.1, the structure is discretized into a coarse 75×30 four-node quadrilateral elements mesh282

for the sake of computational costs. In the examples of sections 5.2 and 5.3, a finer mesh with283

150× 60 four-node quadrilateral finite elements is adopted.284

To evaluate the added value of the present framework, two solutions are defined:285

1. A so-called ”S-design” solution. This solution is obtained by static topology optimization286

with minimization of compliance under volume constraint with a static force chosen as F s =287

−100N. Then, the design is remained unchanged during the dynamic fracture simulation.288

(a) (b)

Figure 6: S-designs obtained for :(a) the half MBB-beam; (b) the cantilever beam.
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Table 2: Numerical parameters for validation of sensitivity analysis.

ϕ ∆ϕe ` v0 ∆t t0 tmax tol

0.5 10−6 4 mm 40m/s 1 µs 2 µs 80 µs 10−5

The obtained design for the two problems studied in the next examples, namely the half289

MBB-beam and the cantilever beam are depicted in Fig. 6.290

2. A so-called ”DF-design” solution. In that case, the problem 42 is solved to define the291

topology: at each iteration of the algorithm, a static problem is firstly solved to prescribe292

the compliance constraint, then a full dynamic fracture simulation is performed to evaluate293

the fracture energy, and compute the sensitivities to update the topology.294

5.1. Validation of sensitivity analysis295

First the sensitivity analysis developed in section 4.3 is validated. Both half MBB-beam and296

cantilever beam are considered.297

The central finite difference method is employed to provide a reference solution to be compared298

with our semi-analytical sensitivities expressions, according to:299

df (ϕ)

dϕe
≈ f (ϕ1, ..., ϕe + ∆ϕe, ..., ϕNe)− f (ϕ1, ..., ϕe −∆ϕe, ..., ϕNe)

2∆ϕe
(67)

where ∆ϕe is a pseudo-density perturbation parameter. The value of the numerical parameters300

are listed on Table 2.301

Figs. 7(a) and (b) depict the fracture plot of the half MBB-beam and cantilever beam at time302

tmax = 80 µs, in which only d > 0.6 is depicted for the sake of clarity. Figs. 7(c) and (d) show the303

normalized error map of the sensitivity values, which is defined by:304

error =

∣∣ξdif − ξana∣∣∣∣ξana∣∣ (68)

where ξ denotes the vector of element sensitivity values. The superscripts dif and ana indicate the305

finite difference method and semi-analytical method, respectively, and ξana denotes the maximum306

element sensitivity obtained by the semi-analytical method. Figs. 7(e) and (f) show a comparison307

between elemental sensitivities associated with the fracture energy of these two structures. A good308

agreement between our analytical expressions of sensitivities and the reference finite difference309

solution is noticed.310
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Figure 7: Validation of fracture energy sensitivity analysis: fracture pattern at tmax = 80 µs in (a) the half MBB-

beam; (b) the cantilever beam; error of normalized sensitivity values (c) the half MBB-beam; (d) the cantilever

beam; sensitivity values in elements at tmax = 80 in (e) the half MBB-beam and (f) the cantilever beam.
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Figure 8: Validation of fracture energy sensitivity analysis on a design-variable-random-distributed structure: frac-

ture pattern at tmax = 80 µs in (a) the half MBB-beam; (b) the cantilever beam; error of normalized sensitivity

values (c) the half MBB-beam; (d) the cantilever beam; sensitivity values in elements at tmax = 80 in (e) the half

MBB-beam and (f) the cantilever beam.

Fig. 8 depicts the sensitivity validation on a structure with random distribution of densities311

ϕe ∈ [0, 1] in the elements. After generating the densities using a uniform probability of distribu-312

tions, a filter is then applied. The other parameters are provided in Table 2.313

We can note that even though the absolute values of sensistivities are good, the relative errors314

might locally be high, even though localized, associated with the approximation made in Eq. (53).315

However, these errors remain acceptable. In addition, it will be shown in the next examples that316

the made approximation allows a large simplification of the whole methodology, while keeping317

important dynamic fracture reduction results.318

5.2. Half-MBB beam319

In this example, the presented methodology is applied to the Half-MBB beam (see Fig. 4(a)) to320

minimize the fracture energy with respect to the topology of the structure. Three different values321

of loading rates are investigated, v0 = 20 m/s, v0 = 40 m/s and v0 = 60 m/s, respectively. Two322

maximal loading times, tmax = 40 µs and tmax = 100 µs, are separately considered. The compliance323
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Figure 9: Obtained topological designs for tmax = 40µs and corresponding final fracture patterns for different

loading rates: (a) DF-design: final topology; (b) DF-design: final crack pattern; (c) S-design: final crack patterns.

(a) (b) (c)

(a) (b) (c)

Figure 10: Comparison of time-energy curves for S-and DF-designs for tmax = 40 µs at different loading rates: (a)

v0 = 20 m/s; (b) v0 = 40 m/s; v0 = 60 m/s

constraints are defined by C0 = 200 N.mm and C0 = 300 N.mm for both loading times. The324

volume fraction constraint is χ = 0.5. The filter radius is chosen as rmin = 4.5 and ` = 2 mm,325

∆t = 1 µs, t0 = 2 µs and tol = 10−5.326

Fig. 9(a) shows the topological designs for tmax = 40 µs for the different loading rates. Material327

on the right side of the loading area is removed because it is the location of cracks initiation328

under high-speed impact. Fig. 9(b) shows the crack patterns at tmax = 40 µs. For comparison,329

the crack patterns of the reference S-design (static case) are shown accordingly in Fig. 9(c) .330

Fig. 10 compares the fracture energy evolution in time for the present Dynamic Fracture DF-331

and S- optimized designs, in a period of time [0-40µs]. An important decrease of the fracture332

energy using the DF-design for all loading rates is appreciated, which shows the importance of333
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Table 3: Comparison of fracture energy using DF-design for tmax = 40 µs and S-design at final simulation time for

different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction

20 258.23 91.51 64.5%

40 2213.33 347.92 84.3%

60 4133.94 627.92 84.8%

Table 4: Comparison on the fracture energy for DF-designs for tmax = 100 µs and S-design at the final time for

different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction

20 2312.37 313.97 86.4%

40 5396.64 1007.77 81.2%

60 8127.18 2530.02 68.9%

including the dynamics in the topology optimization analysis as compared to the designs obtained334

by simple static analysis. Corresponding comparisons and fracture energy reduction at t = 40 µs335

are presented in Table 3. When the loading rate increases, and thus the related dynamic effects,336

the reduction of the fracture energy as compared to the one obtained by static analysis is even337

larger.338

Fig. 11 depicts the iterative process plots of the above topology optimizations. Regardless of339

the jumps caused by the variation of the projection parameter η, a good convergence is appreciated.340

All the optimization constraints are verified, except the compliance constraint for v0 = 60 m/s,341

which might be too strict to be reached in this case. The competition between minimizing342

the fracture energy and satisfying the compliance constraint might be one possible reason for the343

observed oscillations. For the case v0 = 20m/s, 647 iterations were necessary, for a total of 8.7 h344

on a single processor for the whole optimization process.345

Next, a longer loading period is investigated, with tmax = 100 µs. Fig. 12 depicts the topological346

designs and their final fracture patterns under different loading rates. Compared to the designs for347

tmax = 40 µs shown in Fig. 9, the obtained designs show an obvious difference, and the final fracture348

patterns also change accordingly. Fig. 13 depicts the iterative processes of these topological349

designs. In this case, although the objective function remains oscillatory, these oscillations remain350
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(a)

(b)

(c)

Figure 11: Iterative topology optimization process for tmax = 40 µs under different lading rates: (a) v0 = 20 m/s;

(b) v0 = 40 m/s; (c) v0 = 60 m/s.
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Figure 12: Topological designs for tmax = 100 µs and corresponding final fracture patterns for different loading

rates: (a) DF-design: final topology; (b) DF-design: final crack pattern; (c) S-design: final crack patterns.

small and around a stable value. The computational time for the case v0 = 20m/s is 23 h for351

672 iterations. The computational times are here proportional to the chosen loading period. Fig.352

14 compares the fracture energy evolution in a period of time [0-100 µs] obtained by the present353

DF-designs for tmax = 100 µs and the S-designs. Once again, an important decrease of the fracture354

energy using the DF-design for all loading rates is appreciated. Corresponding comparisons and355

fracture energy reductions at t = 100 µs are indicated in Table 4.356

5.3. Cantilever beam357

In this section, the cantilever cantilever beam shown in Fig. 4(b) is investigated. Similarly,358

three different values of loading rates, v0 = 20 m/s, v0 = 40 m/s and v0 = 60 m/s are studied.359

The maximal loading time in this example is defined by tmax = 60 µs. The compliance constraint360

is defined by C0 = 200 N ·mm. The volume fraction constraint is χ = 0.5. The filter radius is361

chosen as rmin = 4.5 and ` = 2 mm, ∆t = 1 µs, t0 = 2 µs and tol = 10−5.362

Fig. 15(a) shows the topological designs of the cantilever beam for different loading rates. Here,363

the proposed method gives different topology designs for different loading rates. Fig. 15(b) shows364

the crack pattern at tmax = 60 µs. Fig. 15(c) depicts the final crack pattern of the S- design for365

comparison. It is worth noting that there remain some gray elements in the DF- designs. This issue366

is a classical one found by several other authors in dynamic topology optimization. For example, it367

is discussed as a key issue in [58] and found in other works such as in [72, 73]. As the main objective368

of this paper is to present the new topology optimization algorithm with fracture minimization369
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(a)

(b)

(c)

Figure 13: Iteration process of the topology optimization for tmax = 100 µs for different lading rates: (a) v0 = 20

m/s; (b) v0 = 40 m/s; (c) v0 = 60 m/s.
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Figure 14: Comparison of time-energy curves for S- and DF-designs for tmax = 100µs at different loading rates: (a)

v0 = 20 m/s; (b) v0 = 40 m/s; v0 = 60 m/s.
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Figure 15: Topological designs for the cantilever beam and corresponding final fracture patterns for different loading

rates: (a) DF-design: final topology; (b) DF-design: final crack pattern; (c) S-design: final crack patterns.
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(a) (b) (c)

Figure 16: Comparison of time-energy curves for S- and DF-designs at different loading rates: (a) v0 = 20 m/s; (b)

v0 = 40 m/s; v0 = 60 m/s.

Table 5: Comparison on the fracture energy of DF- and S-design for the cantilever beam at the final time for

different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction

20 638.56 227.20 64.4%

40 1289.30 546.75 57.6%

60 1788.05 578.54 67.6%

objective, fully addressing this problem is reported to later studies. Fig. 16 depicts the fracture370

energy evolution of the DF- and S- designs in a period of time [0-60 µs]. Table 5 provides the371

comparison of fracture energy for different loading rates of the DF- and S- designs at the final372

time. Again, the DF-designs show large reductions of the fracture energy. Further investigations,373

including comparisons with stress-based linear topology optimization, could be conducted in future374

studies.375

Fig. 17 depicts the iterative processes of the topology optimizations for different loading rates.376

A good convergence is obtained and all the constraints are reached. The computational time for377

the case v0 = 20m/s is 12.7 h for 624 iterations.378

As a final remark, we can note that in most studied examples, the cracks are rather diffuse379

damage zones. In the present phase field framework, the cracks width depends on the mesh380

density. To maintain reasonable computational costs, we used meshes which do not allow very fine381

descriptions of cracks. However, it has been shown in many other studies (see e.g. [45]) that the382

phase field method is fully convergent with respect to the mesh density, even in the dynamic case.383

Then, finer crack descriptions can be obtained if faster computational ressources are available.384
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(a)

(b)

(c)

Figure 17: Iteration process of the topology optimization of cantilever beam for different lading rates: (a) v0 = 20

m/s; (b) v0 = 40 m/s; (c) v0 = 60 m/s.
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6. Conclusion385

A SIMP topology optimization framework for maximizing the dynamic fracture resistance has386

been proposed. Several contributions have been introduced. The dynamic phase field method for387

fracture has been combined with SIMP topology optimization. Then, a topology optimization388

minimizing the fracture optimization as an objective function under constraints of material vol-389

ume and verification of local equilibrium equations has been originally proposed. Semi-analytical390

expressions of sensitivities in this context have been derived, and their accuracy using numerical391

finite difference approximations has been validated. The algorithm involves solving at each iter-392

ation first a static problem to evaluate the compliance and then a full dynamic fracture problem393

from initiation to crack propagation, during a given period of time, then taking into account the394

whole loading history. A staggered scheme with convergence iterations has been used to solve the395

dynamic phase field problem thus authorizing larger time steps. Numerical examples on structural396

problems subjected to impacts for different loading velocities have been investigated. The exam-397

ples show that the present dynamic analysis allows reducing the fracture energy as compared to398

the designs obtained from static classical topology optimization analysis.399
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